3.759 \(\int \cot ^{\frac{3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx\)

Optimal. Leaf size=103 \[ \frac{(2+2 i) a^{3/2} \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}-\frac{2 a \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{d} \]

[Out]

((2 + 2*I)*a^(3/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]
*Sqrt[Tan[c + d*x]])/d - (2*a*Sqrt[Cot[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/d

________________________________________________________________________________________

Rubi [A]  time = 0.209593, antiderivative size = 103, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {4241, 3545, 3544, 205} \[ \frac{(2+2 i) a^{3/2} \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}-\frac{2 a \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

((2 + 2*I)*a^(3/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]
*Sqrt[Tan[c + d*x]])/d - (2*a*Sqrt[Cot[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/d

Rule 4241

Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Tan[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ
[u, x]

Rule 3545

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(a*b*(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1))/(f*(m - 1)*(a*c - b*d)), x] + Dist[(2*a^2)/(
a*c - b*d), Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f},
 x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && EqQ[m + n, 0] && GtQ[m, 1/2]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \cot ^{\frac{3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx &=\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{(a+i a \tan (c+d x))^{3/2}}{\tan ^{\frac{3}{2}}(c+d x)} \, dx\\ &=-\frac{2 a \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{d}+\left (2 i a \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx\\ &=-\frac{2 a \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{d}+\frac{\left (4 a^3 \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{-i a-2 a^2 x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}\\ &=\frac{(2+2 i) a^{3/2} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right ) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}}{d}-\frac{2 a \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{d}\\ \end{align*}

Mathematica [A]  time = 1.20794, size = 105, normalized size = 1.02 \[ -\frac{2 a e^{-i (c+d x)} \sqrt{\cot (c+d x)} \left (e^{i (c+d x)}-\sqrt{-1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\frac{e^{i (c+d x)}}{\sqrt{-1+e^{2 i (c+d x)}}}\right )\right ) \sqrt{a+i a \tan (c+d x)}}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

(-2*a*(E^(I*(c + d*x)) - Sqrt[-1 + E^((2*I)*(c + d*x))]*ArcTanh[E^(I*(c + d*x))/Sqrt[-1 + E^((2*I)*(c + d*x))]
])*Sqrt[Cot[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/(d*E^(I*(c + d*x)))

________________________________________________________________________________________

Maple [B]  time = 0.372, size = 575, normalized size = 5.6 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(3/2),x)

[Out]

-1/d*2^(1/2)*a*(2*I*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)+1)*sin(
d*x+c)+2*I*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)-1)*sin(d*x+c)+I*
((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*ln(-(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)-cos(d*x+c)-sin(d*x
+c)+1)/(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)+cos(d*x+c)+sin(d*x+c)-1))*sin(d*x+c)-2*((cos(d*x+
c)-1)/sin(d*x+c))^(1/2)*sin(d*x+c)*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)+1)-2*((cos(d*x+c)-1)/sin(d
*x+c))^(1/2)*sin(d*x+c)*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)-1)-((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*
sin(d*x+c)*ln(-(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)+cos(d*x+c)+sin(d*x+c)-1)/(((cos(d*x+c)-1)
/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)-cos(d*x+c)-sin(d*x+c)+1))+I*2^(1/2)*sin(d*x+c)+2^(1/2)*cos(d*x+c)-2^(1/2
))*(cos(d*x+c)/sin(d*x+c))^(3/2)*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)*sin(d*x+c)/(I*sin(d*x+c)+cos(d
*x+c)-1)/cos(d*x+c)

________________________________________________________________________________________

Maxima [B]  time = 2.12722, size = 734, normalized size = 7.13 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

(((2*I - 2)*a*arctan2(2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arcta
n2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)) + 2*sin(d*x + c), 2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*c
os(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)) + 2*cos(d*x + c)) + (I + 1
)*a*log(4*cos(d*x + c)^2 + 4*sin(d*x + c)^2 + 4*sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2
*c) + 1)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1))^2 + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2
*d*x + 2*c) - 1))^2) + 8*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(d*x + c
)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)) + sin(d*x + c)*sin(1/2*arctan2(sin(2*d*x + 2*c), co
s(2*d*x + 2*c) - 1)))))*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*sqrt(a) + ((-
(2*I + 2)*a*cos(d*x + c) - (2*I - 2)*a*sin(d*x + c))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1))
+ ((2*I - 2)*a*cos(d*x + c) - (2*I + 2)*a*sin(d*x + c))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1
)))*sqrt(a))/((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*d)

________________________________________________________________________________________

Fricas [B]  time = 1.3739, size = 842, normalized size = 8.17 \begin{align*} -\frac{4 \, \sqrt{2} a \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} e^{\left (i \, d x + i \, c\right )} - \sqrt{\frac{8 i \, a^{3}}{d^{2}}} d \log \left (\frac{{\left (2 \, \sqrt{2}{\left (a e^{\left (2 i \, d x + 2 i \, c\right )} - a\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} e^{\left (i \, d x + i \, c\right )} + \sqrt{\frac{8 i \, a^{3}}{d^{2}}} d e^{\left (2 i \, d x + 2 i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{2 \, a}\right ) + \sqrt{\frac{8 i \, a^{3}}{d^{2}}} d \log \left (\frac{{\left (2 \, \sqrt{2}{\left (a e^{\left (2 i \, d x + 2 i \, c\right )} - a\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} e^{\left (i \, d x + i \, c\right )} - \sqrt{\frac{8 i \, a^{3}}{d^{2}}} d e^{\left (2 i \, d x + 2 i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{2 \, a}\right )}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/2*(4*sqrt(2)*a*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)
)*e^(I*d*x + I*c) - sqrt(8*I*a^3/d^2)*d*log(1/2*(2*sqrt(2)*(a*e^(2*I*d*x + 2*I*c) - a)*sqrt(a/(e^(2*I*d*x + 2*
I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*e^(I*d*x + I*c) + sqrt(8*I*a^3/d^2)*d*e
^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/a) + sqrt(8*I*a^3/d^2)*d*log(1/2*(2*sqrt(2)*(a*e^(2*I*d*x + 2*I*c) -
a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*e^(I*d*x + I*
c) - sqrt(8*I*a^3/d^2)*d*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/a))/d

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**(3/2)*(a+I*a*tan(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac{3}{2}} \cot \left (d x + c\right )^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((I*a*tan(d*x + c) + a)^(3/2)*cot(d*x + c)^(3/2), x)